SLIGHTLY TWISTED JETS IN A COCURRENT FLOW

V.G. Shakhov UDC 532,522

Integration is used to provide an approximate solution for the problem of slightly twisted jets
and wakes in a cocurrent flow for the case of laminar and turbulent flows of an incompressible
liquid. A method involving the asymptotic thickness of the jet is used to achieve a solution to
the problem for the case of a turbulent wake behind a rotating body.

The problem of propagating a twisted axial jet in an unbounded space has been considered by a num-
ber of authors (for example, [1-4]).

In this paper we present an approximate integral method of calculating the main segment of a slightly
twisted jet in a cocurrent flow. No limitations are imposed on the relationship between the velocity ug
outside the jet and the velocity u, within the nozzle. When m = ug/u, < 1, we have the case of a jet in a co-
current flow (the condition m = 0 corresponds to the special case of an immersed jet). Cases in which m
> 1 come about in the wake behind a body or in the jet in a cocurrent flow. The following method is based
on results obtained in [5] for plane and axisymmetric jets.

The integration results are compared with those obtained by other investigators, and for the case of
a turbulent wake behind a rotating body the comparison is with the asymptotic jet-thickness solution pre-
sented below.

The equations of motion for slightly twisted axial flow in cocurrent flow can be written in the form
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Here and beyond, the upper sign corresponds to the wake and to the jet in the cocurrent flow when m > 1,
the lower sign corresponds to the jet in the cocurrent flow when m < 1.

In the equations of motion (1)-(3), with only slight twisting it was assumed that gradp = 0.

To isolate the nonzero solutions of the system of equations (1)-(3), we introduce the two invariants

&
I=2mp § (i — ug) rdr, (4
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Let us now present the profiles of the components for the frictional stress across the jet in the form
of polynomials of degree r [6]:

T= % A =1, 2. (6)
0
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The coefficients of the polynomials in (6) are determined from (1)-(3) and from the boundary condi-

tions at the symmetry axis and at the outside boundary of the jet:
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Substituting (7) into (6), we have

Relationships (8) and (9) are valid for both laminar and turbulent flow regimes.

Laminar Jet Flows. Here

_  du 0 w
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It foliows from (1)-(5) and (8)-(10) that in the assumption of slight twisting the flow characteristics

in the axial direction (u and §) are independent of the twisting (or of the velocity component w).

Having substituted (8) into (10a), having integrated the latter, and having determined the integration

constant from the condition ry = 0 and u = u,,,, we have

amt = F 1o [ F o, — () | 6385 +30).

When ry =1, u=us and it therefore follows from (11) that

Us — U —_T_.__a.__ X ou, U — l)
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Consequently, the profile of the axial velocity component from (1) and (12) assumes the form

21

Usp

Ut =

= 1—6r2 4 8¢5 — 3r}
or
U=ty T Uy, (1—6rF + 83 — 3rh).

Using (10a) and (14), we determine the magnitude of (71/r), in (12):
(Tl/r)o = - 12”, ulm/52.
Substitution of (15) into (12) yields

e 1F4

dx = — g0
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On discharge of the jet from a point source when x = 0, ujy, = «, while for the case of a wake when

x =0, ugm=1.

To integrate (16) we have to establish the relationship between 6 and uf,,. With a wake or a jet ina
cocurrent flow, this relationship is obtained from the condition of constant momentum (4) in all of the la-

teral cross sections of the jet.

1042



Since the velocity profiles (13) and condition (4) coincide with the data of [5], we will simply use the
results from that reference, namely:
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Substituting (17) into (16) and integrating, we have
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where a; =—1.352 and a, = 0.306,

In calculating the wake for a sufficiently great distance from the coordinate origin, in (17) and (1‘8)
the square of the velocity ufy, is negligibly small in comparison with its first power. Here

§— (24_‘1_)“2 A, (19)
us

i = ———— L (20
4.8tp x

In the case of an immersed jet when ug = 0, it follows analogously that

— 2 172
5=7.78Vn( v ) %, 21
K (21)

1 K1
Hm = 2,52x v x (22)

The resulting formulas completely solve the problem of calculating the axisymmetric laminar jet
or wake in a cocurrent flow without twisting.

Substituting (9) into (10b), integrating, and determining the integration constant from the condition
ro=1and w = 0, we have

2
w2 8 (i) ro[1— ro(3—3r, + )] . (23)
3 u r Jo
It is easy to prove that the maximum of the velocity component w will be found when r; = 1/4 and it
is equal to
9 62 Ty
= —— — (-2} (29)
“m 128 13 ( r )o
From (23) and (24) we find
w256 P
o = Pl 11 —ry (3—3r, + rd)] . (25)

The relationship between wy,, and x is determined from the condition of a constant angular momentum
(5) at any cross section of the jet.

Substituting (14) and (25) into (5) and integrating, we obtain

128 23
M = v npd® uf wd (1 T ) u‘l’m) ,
which yields
af— 25 M s (1 2 B (26)
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It follows from (17) and (26) that
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From large values of x and square of the velocity u)y, is negligibly small in comparison with its
first power, Here from (27) and (20) we have

= o M ()Y 28
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In the case of an immersed jet when ug, = 0, in analogous fashion from (27) and (22) we find
I K (ﬁ)‘” € )

w,, =
TONTIRYZ W v? X2

For comparison let us present the results obtained by other researchers at this time.

For the case of a wake at a rather substantial distance from the rotating body Kalashnikov [6] found

F 1
thy, = > (30)
4mp - x
: " 3
o= L M) 31)
18.6x PUy \vx
For a laminar slightly twisted jet the self-similar solutions [1, 3] yield
Uy = — 2
267Tn v x (32)
= E_( Kye L (33)
174032 & \ ¥ x2

We see from a comparison of (20) with (30), (22) with (32), (28) with (31), and (29) with (33) that the
corresponding formulas for the proposed integral method differ from the formulas for the "asymptotic?
solutions only in terms of the numerical coefficients, This difference is slight and ranges within the usual
limits of variation for the theory of a layer of finite thickness and for the theory of the asymptotic layer.

Turbulent Jet Flows, For a turbulent flow regime the relationship between the frictional stress com-
ponents and those of the averaged velocity are chosen as follows:

ou
e (34)

K +8dr

d w
—er— [ 2. 35
Ty =§&r or (r) (35)

Since we are dealing with the problem of jet flow involving limited twist, on the basis of the author's
results [7] it may be assumed in approximate terms that

& =g, (36)
The relationship for &, is usually [5] taken in the form
g = pud uy,,,. (37)

In (37) we can assume [8] that » = 0,0097.

It follows from (8), (9), and (34)-(37) that in the assumption of limited twist, as well as in the lam-
inar regime, the flow characteristics in the axial direction (u and 8) are independent of twisting (or of w).
Consequently, Egs. (8), (34), and (37) form a system of equations for an axisymmetric untwisted jet flow.
This problem is considered in [5]. We therefore present here the basic results from [5], which we will
need in the following.

The profile of the velocity u, as before, has the form of (14), and the relationship between 6 and
Wy, is determined, again as before, by relationship (17). Finally, the variation of uj,, with respect to
x is described by the equation

_ Ziy 3333 _ 6,507 1/1 R
C T oV [( W T ) T Yin T g Un T2 | (38)

Im

where by = 0.692 and by =—1.490.
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Fig. 1. Velocity profiles: 1) longitudinal velocity component u® calculated
from (13); 2) circumferential velocity component w® calculated from (25); 3)
circumferential velocity component w® from [6].

Fig.2. Thickness of jet flow. Laminar regime: 1) wake behind body; 2) jet
in cocurrent flow calculated from (17) and (18) §; = 6/Z1 90 X = (vx)/(ud

. 21 9)); turbulent regime: 3) wake behind body; 4) jet in cocurrent flow cal-
culated from (17) and (38) §; = 8/Z; 5 X = nx/Zy,,).
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Fig.3. Change of axial velocity component. Laminar regime: 1) wake behind:
body; 2) jet in cocurrent flow according to (18)X=(vx)/ (uGZf,z)); turbulent
regime: 3) wake behind body; 4) jet in cocurrent flow according to (38) X

= ux/Zq o)

Fig.4. Change of circumferential velocity component. Laminar regime: 1)
wake behind a rotating body; 2) twisted jet in cocurrent flow according to (18)
and (27) W = (pu§ 2} ,/Mywiy; X = (vx)/(u6Z} ,9); turbulent regime: 3) wake
behind a rotatmg body, 4) twisted jet in cocurrent flow according to (27) and
(38) W = (PU—5Z1 z/M)Wna X = %X/Z1 9.

In calculating a wake at rather substantial distances from a body, we can use the following relation-
ships (see the explanation preceding (19) and (20)):

= 3,06x14 (¢, Sx)1/3 (39)
0.099 /c,S \!/3
= =2 —x;) . (40)

In the case of an immersed jet when ug = 0, we analogously have

8 = 24xx, (41)
‘- 0.0726 i)“z 1 (42)
" % 0 x

Let us not turn to the determination of the parameters which characterize twisting in turbulent jet
flows.
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It follows from (9) and (35)-(37) that the profile of the circumferential velocity component w is again
determined by relationship (25), but in this case

9 Ty > 1
w, = —— | — .
‘ 128 \ r Jo oy,
Since the profiles of the velocity componénts u and w for laminar and turbulent regimes are identical

in form and since the relationship between 8 and w,, coincides (see (17)), for the turbulent regime formu-
las (26) and (27) remain valid.

In calculating the wake at rather large distances from a rotating body, on the basis of (40) we have

1 Kz Uy
Wy = ——— —my— —— .
TTI2m - W gy 43)

It follows from (42) that in the case of an immersed jet
_ 1 K, 1 (44)
On = TEn BKE £

A Turbulent Wake behind a Rotating Body. We present another solution for the problem of the tur-
bulent wake behind a rotating body. The formulation of the problem coincides with that of the laminar wake
[6]. We are dealing with an axisymmetric turbulent wake at a considerable distance behind a rotating body
in the flow of an incompressible liquid.

The axial component of the velocity u is presented in the form
u=uy+u.

Let us assume that at a considerable distance from the body we have u' << us. The linearized sys-
tem of equations for this problem from (1)-(3), (34), and (35) has the form

As was pointed out above, for the case of slight twisting relationships (36) and (37) are valid, We
will find the values of 4 and uyp, from the problem of the untwisted wave [5] (see (39) and (40) of this paper).
From (36), (37), (39), and (40) we therefore have .

& = 0,303%2/3 uy (¢, S)3 18 = vy %178, (49)
Considering (49), we come to the conclusion that Eqgs. (45)-(48) are linear,

Introducing a new variable with the formulas

=S 9 s 9 (50)
2 - an ox
we write system (45)-(48) in the form
ou’ o’ 1 o 1 p’

— = —_— 51
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System (51)-(54) coincides with that derived in [6]. There we can also find the solutions for this
system, Returning in the solutions to the variable x, we have

0 — 0.088 ¢S ‘/3, (55)
1m %2/3 xz
- 1 K, Uy

On = 5 lm izl ouyx (56)

The formulas thus derived in this section provide for the complete solution of the problem of a slightly
twisted turbulent wake in an incompressible liquid at a rather substantial distance from a rotating body.

For the case of a slightly twisted turbulent jet, the self-similar solution from [3] has the form

1/2
4, = 0.0633 (_L) L, 57
% P X
1 K, 1
W, = —
" 57.5n %Ki a2 (58)

We see from a comparison of (40) with (55), (42) with (57), (43) with (56), and (44) with (58) that, as
in the case of the laminar regime, the corresponding formulas of the proposed method differ from the for-
mulas of the "asymptotic" solutions only in their numerical coefficients. This is a slight difference and
falls within the range of conventional difference in the theory of a layer of finite thickness and in the theory
of the asymptotic layer.

Figures 1-4 illustrate the basic results of this paper.
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NOTATION

are constants;

is the coefficient of body drag;

is the body drag force;

is the momentum of the jet;

is the kinematic jet momentum;

is the kinematic angular momentum of the jet;
is the angular momentum of the jet;

is the excess pressure within the jet;
is the area of the midsection of the body;
are the components of the velocity in a cylindrical system of coordinates;

is the velocity of the uniform flow outside of the jet;
is the discharge velocity of the jet from the nozzle;

is the thickness of the jet;
is the coefficient of turbulent viscosity;
is the value of & for untwisted flow;
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1 = (3/2)x2/3;

ny = vn/us;
b4 is an experimental constant;
) is the dynamic viscosity of the liquid;
v=up/lp is the kinematic viscosity of the liquid;
vr = 0,303x%/3;
t=r1/Vo0g >
p is the density of the liquid;
7y and Ty are.the components of the frictional stress in the direction of the x-axis in the circum-
ferential direction, respectively.
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